Block-Iterative and String-Averaging Projection Algorithms in Proton Computed Tomography Image Reconstruction

نویسندگان

  • S. N. Penfold
  • R. W. Schulte
  • Y. Censor V. Bashkirov
  • S. Macallister
  • K. E. Schubert
  • A. B. Rozenfeld
چکیده

Proton computed tomography (pCT) is an imaging modality that is based on tracking individual protons as they traverse the object to be imaged. Proton-by-proton tracking is necessary due to the effects of multiple Coulomb scattering (MCS), a process that deviates the proton path from a striaght line. If optimal spatial resolution is to be achieved, the path of each proton must be predicted with a maximum likelihood formalism that models MCS. Further, image reconstruction methods are required that are able to handle these non-linear paths. This had led to the exploration of algebraic reconstruction techniques (ART) in pCT. However, because iterative algebraic methods are computationally expensive, parallel compatible versions of the ART class, executed simultaneously over multiple processing units are required if pCT is to be realistic for a clinical environment. In this study we investigate the image quality achieveable with block-iterative and stringaveraging projection algorithms in application to simulated pCT data. From the results we make a recommendation as to which algorithms should be used in future studies with pCT image reconstruction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Techniques in Iterative Proton CT Image Reconstruction

This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered t...

متن کامل

Comparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography

Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...

متن کامل

Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality

Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

Total variation superiorization schemes in proton computed tomography image reconstruction.

PURPOSE Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, the noise in the reconstructed image increases with successive iterations. In the current work, the authors investigated the use of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008